New Solids Based on B$_{12}$N$_{12}$ Fullerenes

J. M. Matxain*
Department of Natural Sciences and Örebro Life Sciences Center, Örebro University, 70182 Örebro, Sweden, Kimika Fakultatea, Euskal Herriko Unibertsitatea, P.K. 1072, 20018 Donostia, Euskadi, Spain, and Donostia International Physics Center, 20080 Donostia, Euskadi, Spain

L. A. Eriksson
Department of Natural Sciences and Örebro Life Sciences Center, Örebro University, 70182 Örebro, Sweden

J. M. Mercero, X. Lopez, M. Piris, and J. M. Ugalde
Kimika Fakultatea, Euskal Herriko Unibertsitatea, P.K. 1072, 20018 Donostia, Euskadi, Spain, and Donostia International Physics Center, 20080 Donostia, Euskadi, Spain

J. Poater
Afdeling Theoretische Chemie, Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands

E. Matito and M. Solà
Institut de Química Computacional, Departament de Química, Universitat de Girona, 17071 Girona, Catalonia, Spain

Received: May 16, 2007; In Final Form: July 4, 2007

In recent years, BN fullerenes have been synthesized experimentally. As their carbon counterparts, these BN fullerenes could be assembled in molecular solids, but this possibility has been studied little in the literature. In this work, we focus on the smallest synthesized BN fullerene, B$_{12}$N$_{12}$, which is built by squares and hexagons. First, the interaction between two of these fullerenes has been analyzed, using the hybrid B3LYP and MPW1PW91 density functional methods. Two different interactions have been studied in the dimer, a square facing a square (S–S) and a hexagon facing a hexagon (H–H). In both cases, a B is facing a N. The most stable dimer was found to be S–S facing, with covalent interactions between the monomers, but other dimers with weak interactions have been found as well, which opens possibilities of new systems, as in the case of fullerene dimers and solids. The solids resulting from the infinite repetition of the characterized dimers were optimized, finding two different solids, with covalent and weak interactions between monomers, respectively. The solid with covalent interactions is a nanoporous material that is more stable by around 12 eV. Because of the nanoporous character of this solid, it could be used for heterogeneous catalysis, molecular transport, and so forth. The SIESTA code with the GGA-PBE density functional method has been used for the solid-state calculations.

I. Introduction

Over 40 years ago, Richard Feynman described how in nanotechnology “there is plenty of room at the bottom!”1 Indeed, the recent spectacular growth of nanotechnology has followed the predictions of some of the pioneers in the field, such as Arthur von Hippel2 and K. Eric Drexler.3,4 There have been many important developments in nanotechnology and new and revolutionary techniques have been developed, such as the scanning tunneling microscope (STM), the atomic force microscope (AFM), and others. It might be possible to create new materials which are useful in a broader sense than their bulk counterparts.9–13 The recent spectacular success of nanotechnology makes cluster science very interesting, since, in addition to rationalizing some surface-related and other properties of bulk materials, studies of clusters of increasingly larger sizes can eventually bridge the gap with nanosize materials in a comprehensible manner. Consequently, the literature in the field is growing rapidly, and several reviews of cluster science have appeared.14–16 One of the best known class of clusters or nanostructures are the so-called fullerenes discovered in 198517 which are hollow carbon spheroidal structures.

Interest in fullerene valence isoelectronic clusters such as III–V clusters is also growing rapidly. Studies of small III–V clusters have become routine works in the literature.18–21 Along with studies of large clusters or bulk material,22–24 III–V fullerenes and nanotubes have also been studied.25–28 Concretely, BN$_{n}$ structures have been widely studied both theoretically and experimentally. Theoretical studies have been performed for fullerene-like B$_{12}$N$_{12}$ clusters,29,30 where it has been found that a structure built from squares and hexagons is more
New Solids Based on B$_{12}$N$_{12}$ Fullerenes

stable than those built from pentagons and hexagons. This is due to the fact that in the second case less stable B–B and N–N bonds are formed. The most stable B$_{12}$N$_{12}$ structure is built from six squares and eight hexagons. This structural pattern has also been found by Wu et al.,31 who also studied larger B,N clusters, $i = 12, 20, 22, 24, 26, 28, 30, 32, 34,$ and 36. Other theoretical calculations have focused on searching for the global minima structures for small B,N clusters, $i = 2, 15$ by Matxain et al.32 and $i = 13, 14,$ and 16 by Strout.33 Both studies agree, predicting spheroid structures built by squares and hexagons to be the global minima for $i > 11$. B$_{12}$N$_{12}$, built by six squares and eight hexagons, is the smallest high-symmetric structure does not change. Carbon fullerenes and BN clusters, monomer geometries as characterized in ref 32 were observed that MPW1PW91 provided accurate results while B3LYP yielded poor results.51,52 However, in those studies, MPW1PW91 was chosen because in previous studies of B–N dative bonds it was observed that MPW1PW91 provided accurate results while B3LYP yielded poor results.51,52 In both cases, a N on one monomer is facing a B on the other, forming a dative N–B bond. Two exchange-correlation functionals have been used, within the density functional theory (DFT) framework.47 On the other hand was the hybrid Becke 3 Lee-Yang-Perdew (B3LYP) gradient-corrected approximation,48,49 and on the other hand was the hybrid one parameter functional using modified Perdew–Wang exchange and Perdew–Wang 91 correlation (MPW1PW91).50 This functional was parametrized to calculate correctly weak interactions as noble gas dimers. These two functionals were chosen because in previous studies of B–N dative bonds it was observed that MPW1PW91 provided accurate results while B3LYP yielded poor results.51,52 However, in those studies, MPW1PW91 was the most tried method. We have also performed MP2 calculations when possible, because of the large size of our dimer. Soft pseudopotentials54 were used to model the core electrons. These were combined with an efficient uncontracted Gaussian basis set for the valence electrons, consisting on five s type, five p type, and one d type functions for both B and N.32 It was demonstrated32 that this combination of pseudopotential and basis set provides accurate results. All of these dimer calculations were carried out using the GAUSSIAN03 program package.55

To explore possible molecular solids constructed from the B$_{12}$N$_{12}$ dimer, we performed DFT calculations using the SIESTA computer code.56 Exchange and correlation effects were described using the generalized gradient approximation (GGA), within the Perdew–Burke–Ernzerhof (PBE) functional.57 This functional has shown to provide reasonably good results for dative B–N bonds,51,52 with its performance lying in between MPW1PW91 and B3LYP but much better than the last one. Core electrons were replaced by Troullier–Martins norm-conserving pseudopotentials58 in the Kleinman–Bylander factorized form.59 In the context of Siesta, the use of pseudopotentials imposes basis orbitals adapted to them. Furthermore, SIESTA employs a localized basis set to represent the Kohn–Sham orbitals for valence electrons. Accordingly, the basis set

\[N_{6\text{-ring}} = i - 4 - 2N_{8\text{-ring}} \quad N_{4\text{-ring}} = 6 + N_{8\text{-ring}} \] (1)
of atomic orbitals is constructed from numerical solutions of
the atomic pseudopotential and are constrained to be zero
beyond a cutoff radius. We used one basis set of double \(\zeta \) plus
polarization quality (DZP). The single parameter (orbital energy
shift) that defines the confinement radii of different orbitals was
\(\Delta E_{PAO} = 150 \text{ meV} \), which gives typical precision within
the accuracy of the used GGA functional. With this basis set,
SIESTA calculates the self-consistent potential on a grid in real
space. The fineness of this grid is determined in terms of an
energy cutoff in analogy to the energy cutoff when the basis
set involves plane waves. In our calculations, we used an
equivalent plane wave cutoff energy of 200 Ry. In every case,
the geometry was relaxed until the maximum forces were
smaller than 0.04 eV/Å. In the solid-state calculation, periodic
boundary conditions were employed considering a \(k \) mesh
according to the Monkhorst-Pack\(^6\) scheme (10 \(\times \) 10 \(\times \) 10).

III. Results

In section III.1, the obtained interaction energy curves and
properties of optimized \(\text{B}_{12}\text{N}_{12} \) spheroid dimers are given. In
section III.2, the study of the solids based on different possible
dimers is performed.

1. Stability of Different \(\text{B}_{12}\text{N}_{12} \) Fullene Dimer.
The \(\text{B}_{12}\text{N}_{12} \) spheroids are built by eight hexagons and six squares,
as may be observed in Figure 1. The symmetry of this fullerene
is very high, \(T_h \), and the squares are placed in such a way that
they fit with the Cartesian axes \(x, y, \) and \(z \). Within squares, the
bond distances are a bit larger than out of the squares, 1.493 Å
versus 1.441 Å, calculated at the B3LYP level of theory.

In general, a significant difference between the BN fullerene
and the carbon fullerenes is that BN fullerenes are composed
from two different atoms. N has a lone pair pointing out from
the surface of the spheroid, while B has an empty orbital. Thus,
dimers containing B facing N would be more stable than those
having N to N, because of the repulsion between the two lone
pairs. On the basis of the fact that the spheroids are built by
squares and hexagons, the most stable dimer orientations will
be \(H-H \) or \(S-S \). In addition to this, regarding the similarities
with isoelectronic carbon fullerenes, one may think that the
interaction between the two monomers is weak. However,
previous works reporting covalent crystals built by \(\text{B}_{12}\text{N}_{12} \)
fullerenes\(^{46} \) show covalent bonds between monomers, with no
loss of the structure of the monomers. In this work, we have
checked all possible dimer interactions, named as \(\text{Cov}_{S-S} \) and

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{potential_energy_curves.png}
\caption{Potential energy curves (in eV) for \(\text{B}_{12}\text{N}_{12} \) fullerene dimers, as a function of the distance between rigid monomers, calculated for both S–S and H–H Facing, using the B3LYP (up) and MPW1PW91 (down) functionals.}
\end{figure}
New Solids Based on B_{12}N_{12} Fullerenes

Figure 3. Optimized structures of the calculated square–square B_{12}N_{12} fullerene dimers, namely, CovS–S, top and VW S–S, bottom.

CoV_{H–H} for covalent interactions facing squares and hexagons, respectively, and VW S–S and VW H–H for weak van der Waals interactions facing squares and hexagons, respectively. All of these possible interactions have been studied using two different functionals, B3LYP and MPW1PW91. The latter was parametrized for describing the van der Waals interactions in nobel gas dimers.

In a first attempt to study these interactions, we have considered each monomer as a rigid molecule; that is, the structure of each monomer remains unaltered, and the energy has been calculated as a function of the distance between each monomer. This is a good approach to the problem, since one expects the structure of each monomer not to change very much, to retain its identity. The potential energy curves for S–S and H–H facing, ranging from 1 to 20 Å, are depicted in Figure 2. Both B3LYP and MPW1PW91 predict, surprisingly, S–S interaction to be more stable than H–H interaction, although in the latter case there are more B···N interactions that could stabilize the dimer. In the S–S case, the interaction energy is 0.08 eV more stable than the H–H case, calculated with B3LYP, and 0.15 eV more stable according to MPW1PW91. In addition to this, MPW1PW91 also predicts larger dissociation energies, 0.40 eV for the S–S and 0.25 eV for the H–H cases, in contrast with the 0.27 and 0.19 eV calculated by B3LYP. About the equilibrium distances, the S–S bond distances are much shorter than the H–H ones, 0.4 and 0.5 Å, according to B3LYP and MPW1PW91, respectively. However, MPW1PW91 predicts shorter distances than B3LYP by around 0.2 Å.

The potential energy curves, calculated with rigid monomers, do not predict covalent interaction between the monomers. This may be due to the fact that the rigidity of the monomers do not favor appropriate angles for covalent bonding. We have fully optimized the dimer structures (Figure 3) using as starting points the minima of the curves obtained in Figure 2. When the monomers are allowed to relax in the dimer, not only the weak dimers are obtained, but also the covalent CoV_{S–S} dimer is obtained. However, all attempts to locate the CoV_{H–H} dimer, using both B3LYP and MPW1PW91, lead to a condensed B_{24}N_{24} cluster. This fact is in discordance with the findings about the E-BN phase, by Prokovitny. He proposed a structure where the B_{12}N_{12} fullerenes were covalently bonded by the hexagons, but according to our calculations, these structures probably would collapse in other structures. All energetics and geometrical parameters of isolated monomers and optimized dimers are given in Table 1.

Both B3LYP and MPW1PW91 yield similar results for the geometries. In the covalent dimer, the geometries of the monomers suffer a small change in the interaction region. Thus, the B–N bond lengths are enlarged about 0.10–0.15 Å, comparing the values of R_{B–N} with the values of the isolated monomer given in Figure 1. This distortion only occurs in the interaction region, since the values of the rings located opposite to the interaction remain very similar to those of the isolated monomer. This change in the bond length makes possible a relaxed interaction between the monomers, and it is crucial for the formation of covalent bonds between the monomers. As one could expect, the covalent interactions are more stable than the van der Waals interactions. In the case of the S–S facing, the covalent dimer is 1.50 and 2.07 eV more stable than the van der Waals dimer, according to B3LYP and MPW1PW91, respectively. The VW S–S–VW H–H dimer is less stable than the VW S–S dimer, according to the ∆E and ∆E_0, but when one takes into account the entropy, the VW H–H dimer becomes more stable by 0.02 and 0.01 eV, according to B3LYP and MPW1PW91, respectively.

The energy differences between covalent and van der Waals dimers are rather large. However, to calculate properly the relative stability of van der Waals dimers, the energy barrier with respect to the covalent dimers and the depth of the van der Waals dimers should be calculated. This depth has been already calculated in the potential energy curves of rigid monomers, since it was observed that the geometries of the monomers in the van der Waals dimers were very similar to those of the isolated monomers. Recall that the dissociation energies were calculated to be 0.40 eV for VW S–S and 0.25 eV for VW H–H, according to MPW1PW91, and 0.27 and 0.19 eV calculated by B3LYP. The dissociation energies are sufficiently large to ensure that the dimer will not dissociate at room temperature. To calculate the energy barriers to cross from covalent to van der Waals dimers, scan calculations have been performed for the S–S case. In these calculations, the R_{Mon–Mon} distance is fixed for several distances, and the remaining parameters are optimized. In this way, we can find the maximum in the potential energy curve that determines the transition state, and the energy barriers can be calculated. The calculated scan

<table>
<thead>
<tr>
<th></th>
<th>(R_{Mon–Mon})</th>
<th>(R_{B–N})</th>
<th>(G_{\text{B–N}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VW S–S)</td>
<td>1.583 (1.577)</td>
<td>1.645 (1.629)</td>
<td>1.494 (1.488)</td>
</tr>
<tr>
<td>(VW H–H)</td>
<td>2.797 (2.760)</td>
<td>1.498 (1.492)</td>
<td>1.493 (1.486)</td>
</tr>
<tr>
<td>(CoV S–S)</td>
<td>3.274 (3.131)</td>
<td>1.494 (1.488)</td>
<td>1.493 (1.486)</td>
</tr>
</tbody>
</table>

\(\Delta E \), \(\Delta E_0 \), and \(\Delta G \) for covalent (Co) and van der Waals (VW) dimers, respectively.
curves are depicted in Figure 4. One may observe that both B3LYP and MPW1PW91 predict small barriers, the last one being almost barrierless, while MP2 calculations do not show any barrier at all. In fact, this shows that the van der Waals dimer is not very stable. It is very likely that the mean lifetime of the van der Waals dimer is very short.

What are the vibrational modes corresponding to the dimers? Do they differ from the monomer’s spectrum? Are they very different for different dimers? In Figure 5 the IR spectra of all characterized dimers are given, compared with the B$_{12}$N$_{12}$ monomer IR spectrum. Having a look at the MPW1PW91 data, we may observe three picks for the monomer, at 806.6, 1175.1, and 1399.0 cm$^{-1}$, respectively. For B3LYP, the results are very similar, and for further discussion, the MPW1PW91 data will be used. According to the IR spectra, the van der Waals dimers have very similar spectra compared to the regular dimer. However, the covalent dimer has a slightly different spectra.

2. Electronic Structure and Properties of Covalent and van der Waals B$_{12}$N$_{12}$ Solids. The unit cells of both covalent and van der Waals solids are defined to be the S–S faced B$_{12}$N$_{12}$ fullerene dimer. The need of including the dimer in the unit cell instead of the monomer comes from the fact that a B from a monomer must face a N. It is not possible to build this situation only with the translation of the monomer, and therefore, the dimer must be included in the unit cell. In this way, the translation vectors are defined to be 0.5, 0.5, and 1, being one in the direction of the dimer interaction. In this way, we ensure that each monomer’s B faces a N and not another B. The difference between the unit cell of the covalent solid and the van der Waals solid is the intermonomer distance. To start with, the distances found in the optimized dimers have been used. This building block has a symmetric shape. The centers of B$_{12}$N$_{12}$ molecules favor the bulk fcc structure, with a nearest-neighbor distance that corresponds to the diameter of the molecule. The fcc structure has been experimentally observed in the valence isoelectronic crystalline C$_{60}$, in which each Bravais-lattice site is occupied by a single fullerene molecule. In Table 2, the geometrical and energetic values of the two characterized solids are given. Having a look at the geometrical parameters, we find our calculations reveal that the lattice parameter of the cubic unit cell of the van der Waals solid is 13.28 Å, with the distance between the monomers 2.518 Å. Compared with the VW$_{S-S}$ dimer, the distance has been lowered by approximately 0.25 Å, but the van der Waals character of the interaction is clear. The distances inside each monomer are

![Figure 4](https://example.com/figure4.png)

Figure 4. Scanned potential energy curves (eV) for B$_{12}$N$_{12}$ fullerene dimers, as a function of the distance between monomers, calculated from the Cov$_{S}$–S to the VW$_{S-S}$ dimer, using the B3LYP and MPW1PW91 functionals.

![Figure 5](https://example.com/figure5.png)

Figure 5. IR spectra of the characterized B$_{12}$N$_{12}$ fullerene dimers, calculated using B3LYP (top) and MPW1PW91 (bottom), compared with the monomer IR data.

| Table 2: Lattice Constant, a, and Bond-Distances, in Åa |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | $R_{\text{Mon-Mon}}$ | R_{B-N}^a | R_{B-N}^b | B_s | ΔE |
| Cov$_{S}$–S | 11.80 | 1.575 | 1.617 | 1.617 | -2.04 | 0.0 |
| VW$_{S-S}$ | 13.28 | 2.518 | 1.503 | 1.503 | -14.08 | 12.04 |

a $R_{\text{Mon-Mon}}$ stands for the distance between monomers; R_{B-N}^a is the B–N distance within the interacting ring of the monomer; and R_{B-N}^b is the B–N distance but in the ring opposite to the interaction.
very similar to those of the isolated monomer, as one could expect from the weak interaction. On the other hand, the lattice parameter of the cubic unit cell of the covalent solid is about 2 Å smaller, with the distance between the monomers 1.5 Å. This shortening of the distance has a small distortion in the monomer, where the distances inside increase by 0.15 Å, as happened in the dissociation region. Nevertheless, each monomer keeps its structure unaltered in all cases. Comparing the two VW interactions, it is observed that the VW solid is more stable. The bond length is 0.5 Å shorter, and the dissociation energy is about 0.16 eV more stable. Comparing the CovS solid and the VW solid, we observe that the covalent dimer is more stable, around 1.6 eV. The VW dimers IR are very similar to that of the monomer; only the covalent dimer has a significantly different IR spectrum.

With the characterized dimers, two solids have been characterized, the CovS solid and the VW solid. In both cases, the fcc structure is favored. The distances between monomers are 1.5 and 2.5 Å for covalent and van der Waals solids, respectively, in good agreement with dimer geometries. As the dimer, the CovS solid is more stable than the VW solid by 12.04 eV. The band analysis of both solids reveal that both solids are insulators.

Reference and Notes

(5) Zach, M. P.; Ng, K. H.; Penner, R. M. Science 2000, 290, 2120.

Acknowledgment. This research was funded by the Swedish National Research Council and the Government of the Basque Country (SAIOTEK program) and the Ministerio de Educacion y Ciencia. The SGI/SGiker UPV/EHU (supported by Fondo Social Europeo and MCyT) is gratefully acknowledged for the generous allocation of computational resources. This paper is dedicated to the memory of Professor Lorenzo Pueyo, an inspiring colleague.

Supporting Information Available: Optimized unit cell and lattice vectors. This material is available free of charge via the Internet at http://pubs.acs.org.