Ab Initio Design of Chelating Ligands Relevant to Alzheimer’s Disease: Influence of Metalloaromaticity

Albert Rimola,† Jorge Ali-Torres,† Cristina Rodríguez-Rodríguez,† Jordi Poater,† Eduard Matito,§ Miquel Solà,‡ and Mariona Sodupe*,†

†Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
‡Institut de Química Computacional and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain
§Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland

Supporting Information

ABSTRACT: Evidence supporting the role of metal ions in Alzheimer’s disease (AD) has rendered metal ion chelation as a promising therapeutic treatment. The rational design of efficient chelating ligands requires, however, a good knowledge of the electronic and molecular structure of the complexes formed. In the present work, the coordinative properties of a set of chelating ligands toward Cu(II) have been analyzed by means of DFT(B3LYP) calculations. Special attention has been paid to the aromatic behavior of the metalted rings of the complex and its influence on the chelating ability of the ligand. Ligands considered have identical metal binding sites (through N/O coordination) and only differ on the kind and size of the aromatic moieties. Results indicate that there is a good correlation between the stability constants (log β_2) and the degree of metalloaromaticity determined through the I_{NG} and HOMA indices; that is, the higher the metalloaromaticity, the larger the log β_2 value. MOs and aromaticity descriptors confirm that present complexes exhibit Möbius metalloaromaticity. Detailed analysis of the nature of the Cu(II)-ligand bonding, performed through an energy decomposition analysis, indicates that ligands with less aromatic moieties have the negative charge more localized in the metalted ring, thus increasing their σ-donor character and the metalloaromaticity of the complexes they form.

INTRODUCTION

The Alzheimer’s disease (AD) is nowadays the most common form of neurodegenerative dementia and a major health concern to our society.1 It is characterized by a progressive loss of neuronal abilities, and its hallmarks are intracellular neurofibrillary tangles and extracellular amyloid deposits or senile plaques.2,3 These plaques are formed by the aggregation of amyloid-beta peptide (Aβ), a 39- to 42-residue fragment cleaved from the much larger amyloid precursor protein (APP). The main alloforms of Aβ found in brain plaques are 40 and 42 amino acids long, the Aβ42 being the least soluble and the one that displays enhanced neurotoxicity.3

The origin and mechanism of the Aβ aggregation is still not clearly understood, and multiple factors have been reported as triggering their formation. In particular, analysis of post-mortem brain tissues shows high concentrations (about millimolars) of Fe(III), Cu(II), and Zn(II) transition-metal ions in AD plaques, thereby suggesting that Aβ aggregation could be mediated by some of these essential ions.4–8 Indeed, in vitro studies revealed that Cu(II) forms a high-affinity complex with the Aβ peptide, which, in turn, may induce its aggregation and the formation of fibrils. Additionally, the Cu(II)–Aβ complex can also participate in the generation of reactive oxygen species (ROS),11,12 leading to an extensive oxidative damage in the brain that causes the neuronal cell loss in AD.11–16 Excellent reviews on the chemistry of AD and on the role of metal ions have recently been published.11,17

On the basis of the stated above, one of the potential antiamyloid aggregation therapeutic approach consists of the treatment with metal-complexing agents to solubilize the toxic deposits of Aβ peptides.18–20 In the metal-ion chelation therapy, however, the chosen chelators should exhibit an adequate metal affinity to sequester the metal ion from the metal–protein complex but not high enough to cause its removal from an essential metal site; that is, they should act as metal-protein attenuating compounds (MPAC).21,22 Although the coordination environment of Cu(II) in Cu(II)–Aβ is controversial and pH-dependent, EPR and NMR experiments revealed that the N atoms from His6, His13, and His14 residues, NH2 terminus, or the amide peptide backbone as well as O atoms from carboxylate groups of different
In this work, a set of Cu(II)-containing complexes based on ligands previously reported by some of us38 and that include different aromatic features have been studied by means of density functional theory (DFT) calculations. These ligands that are based on the main structural and aromatic features of thioflavin-T (ThT) and the metal-chelating properties of clioquinol (HCQ), are 2-(2-hydroxyphenyl)benzoxazole (N\textsubscript{X}–OH\textsubscript{1}), 2-(2-hydroxyphenyl)benzothiazole (N\textsubscript{X}–OH\textsubscript{1}) and 2-(2-hydroxyphenyl)-1H-benzimidazole (N\textsubscript{X}–OH\textsubscript{1}) (see Scheme 1). The complexes formed with these ligands exhibit two metalated rings that may manifest aromatic properties. The π electrons of each metallacycle, however, contribute at the same time to the π-electron system of the aromatic rings belonging to the ligands. To analyze how this fact influences the metalloaromaticity and the complex stability, we have performed calculations for [Cu(L)\textsubscript{2}] complexes with different ligands derived from the previous ones (N\textsubscript{X}–OH\textsubscript{1}, X = O, S, NH) by sequentially removing the aromatic moieties defined as “a,” “b” and “c” in Scheme 1. These ligands will be hereafter referred to as N\textsubscript{X}–OH\textsubscript{n} (n = 2, 3, and 4). The chelating properties of the ligands toward Cu(II) have been assessed by calculating the stability constants of the complexes and by a detailed analysis of the metal–ligand bonding through different aromaticity criteria.

Methods

Full geometry optimizations and harmonic frequency calculations were performed using DFT with the nonlocal hybrid B3LYP39,40 functional, a well-tested functional that has been successfully used for a wide variety of systems, including open-shell Cu(II) complexes with saturated coordination environments and similar spin density distributions.41–43 Additionally, our previous study33 on the chelating properties of different ligands toward Cu(II) and Zn(II) showed good agreement with the observed experimental trends. All calculations were carried out using the following basis sets: For Cu, we used the Wacher’s primitive set (14s9p5d),44 supplemented with one s, two p, and one d diffuse function45 and one f polarization function, the final basis set being (15s11p6d1f)/[10s7p4d1f]; for iodine, we used the quasi-relativistic effective core potential (ECP) of Hay and Wadt46 to represent the innermost electrons and the standard double-\textit{z} LANL2DZ set associated to the ECP for the valence and outermost core orbitals; and for H, C, N, O, and S we used the standard 6-31++G(d,p) basis set. Thermodynamic corrections have been obtained assuming an ideal gas, unscaled harmonic vibrational frequencies, and the rigid rotor approximation by standard statistical methods.47 Solvation effects were modeled through single-point energy calculations at the same level of theory, with water as solvent, using the self-consistent field polarizable continuum model, COSMO.48,49 To compute the free energy of the [Cu(H\textsubscript{2}O)\textsubscript{4}]2+ + 2HL \rightleftarrows [Cu(L)\textsubscript{2}] + 4H\textsubscript{2}O + 2H+ reaction in water solution (ΔG\textsubscript{solv}), we have followed the strategy adopted by some of us in previous works33,50 using the experimental free energy values for the solvation of water and H+ (ΔG\textsubscript{solv}(H\textsubscript{2}O) = −6.31 kcal mol−1 51 and ΔG\textsubscript{solv}(H+) = −265.9 kcal mol−1,52 respectively). Because this reaction occurs in solution, the entropy obtained in gas phase was converted from 1 atm to 1 M by subtracting the R ln(V\textsubscript{1}/V\textsubscript{2}) cal K−1 mol−1 term to account for the volume change between the two states at 298 K.53 Also, the term of RT ln(S\textsubscript{5.6}) was added to the ΔG\textsubscript{solv}(H\textsubscript{2}O) term because liquid water concentration is 55.6 M. Further details are available in the Supporting.

Scheme 1

![Scheme 1](image-url)
Information. Geometry optimizations, frequency calculations, and single-point energy CPCM calculations were performed using the Gaussian 03 set of programs.54 As a structure-based measure of metalloaromaticity, we have calculated the harmonic oscillator model of aromaticity (HOMA) index, defined by Kruszewski and Krygowski as55,56

\[
\text{HOMA} = 1 - \frac{\alpha}{n} \sum_{i=1}^{n} (R_{\text{opt}} - R_i)^2
\]

where \(n\) is the number of bonds considered and \(\alpha\) is an empirical constant (for C–C, C–N, and C–O bonds \(\alpha = 257.7, 93.5\) and 157.4, respectively) fixed to give HOMA = 0 for a model nonaromatic system, and HOMA = 1 for a system with all bonds equal to an optimal value \(R_{\text{opt}}\) (1.388, 1.334, and 1.265 Å for C–C, C–N, and C–O bonds, respectively), assumed to be achieved for fully aromatic systems. \(R_i\) stands for a running bond length. The calculated HOMA values correspond to the OCCCN group of atoms of the metallacycle, that is, all pairs of atoms present in the metalated ring except N–Cu and O–Cu because \(R_{\text{opt}}\) and \(\alpha\) values for these bonds are not available.

In addition, the electronic-based \(I_{\text{NG}}\) index (which estimates the cyclic overlap of molecular orbitals in a given ring) has also been calculated for some of the compounds by obtaining the corresponding wave functions of the compounds under analysis. If we consider a ring structure of \(N\) atoms represented by the following string \(L = \{A_1, A_2, ..., A_N\}\), for a closed-shell monodeterminantal wave function, then the multicenter \(I_{\text{NG}}\) index, a normalized version of Giambiagi's57,58 \(I_{\text{top}}\) reads59

\[
I_{\text{NG}}(\mathbf{A}) = \frac{\pi^2}{4NN^2} \sum_{i_1, i_2, ..., i_N} n_{i_1} n_{i_2} \cdots n_{i_N} S_{i_1i_2}(A_1)S_{i_2i_3}(A_2)\cdots S_{i_Ni_1}(A_N)\right)^{1/N}
\]

where \(N_e\) is the number of \(\pi\)-electrons, \(S_{ij}(A)\) is the overlap between natural orbitals \(i\) and \(j\) in the atom \(A\), and \(n_i\) are their occupancies. For benzene, the \(I_{\text{NG}}\) value is \(\sim 0.04.60\) Although several atomic partitions may be used for the calculations of the overlap between molecular orbitals \(i\) and \(j\) within the molecular space assigned to atom \(A\),61,62 we have chosen in the present work the partition carried out in the framework of the quantum theory of atoms-in-molecules (QTAIM) of Bader,63,64 by which atoms are defined from the condition of zero-flux gradient in the one-electron density, \(\rho(r)\). Calculation of atomic overlap matrices (AOMs) and computation of \(I_{\text{NG}}\) have been performed with the AIMPAC55 and ESI-3D56 collection of programs. For the \(I_{\text{NG}}\) calculations, all atoms present in the metal ring including the Cu atom have been considered. For the indices used, it is established that the higher the HOMA and the \(I_{\text{NG}}\) values the more aromatic the rings.

Moreover, to get a better understanding of the bonding between Cu(II) and the chelating ligands, an energy decomposition analysis (EDA) has also been carried out.67–73 The Amsterdam density functional (ADF)74 software has been used for such purpose, and the EDA analysis has been calculated onto the B3LYP/[10s7p4d1f]-ECP-6-31+G(d,p) ECP optimized geometries by a single-point energy calculation with the B3LYP functional59,60 using the TZ2P basis set that contains an uncontracted set of Slater-type orbitals (STOs) of triple-\(\zeta\) (TZP) quality with diffuse functions and two sets of polarization functions.75 To reduce the computational time needed to carry out the calculations, the frozen core approximation has been used.76 The total complexation energy (\(\Delta E\)) corresponds to the reaction of Cu2+ + 2 L \(\rightarrow\) [Cu(L\textsubscript{2})] (\(L\) being the chelating ligands), and through EDA it is decomposed into two terms, the preparation and the interaction energies: \(\Delta E = \Delta E_{\text{prep}} + \Delta E_{\text{int}}\). The preparation energy (\(\Delta E_{\text{prep}}\)) is the amount of energy required to deform the ligands from their equilibrium structure to the geometry that they acquire in the metal complex, whereas the interaction energy (\(\Delta E_{\text{int}}\)) corresponds to the actual energy change when these geometrically deformed ligands are combined with Cu to form the metal complexes. \(\Delta E_{\text{int}}\) is analyzed in the framework of the Kohn–Sham molecular orbital model using a quantitative decomposition of the bond into electrostatic interaction, Pauli repulsion, and orbital interactions terms represented as \(\Delta E_{\text{int}} = \Delta V_{\text{elstat}} + \Delta E_{\text{Pauli}} + \Delta E_{\text{ori}}\). \(\Delta E_{\text{ori}}\) can be decomposed according to the extended transition-state method (ETS)70,71 into the contributions from each irreducible representation \(\Gamma\) of the interacting system. In the planar systems, we have performed the \(\sigma/\tau\) separation because this symmetry partitioning has been proven to be quite informative.

RESULTS AND DISCUSSION

Geometries, Reaction Energies, and Stability Constants.

As mentioned, metal-ion chelators considered in the present
The stability constants of the Cu(II) complexes have been evaluated by computing the reaction free energy of \([\text{Cu(H}_2\text{O)}_4]^{2+} + 2\text{HL} \rightarrow \text{[Cu(L)]}_2 + 4\text{H}_2\text{O} + 2\text{H}^+\) in aqueous solution (log \(\beta_2\) = -1(1/2.303RT)\(\Delta G_{\text{sol}}\)), the solvent effects being accounted for with the polarizable continuum model.\(^\text{36}\) The reaction free energies (\(\Delta G_{\text{sol}}\)) at \(T = 298\) K along with the estimated stability constants \(\log \beta_2\) are summarized in Table 2. First of all, the good agreement observed between the computed \(\log \beta_2\) stability constants of \([\text{Cu(L)]}_2\) complexes with \(\text{L = N}_\text{NH} - \text{OH}_2\) and \(\text{N}_\text{OH} - \text{OH}_1\) (15.1 and 11.0, respectively) with the values determined experimentally by UV—vis pH titrations (14.4 and 12.0) is remarkable,\(^\text{38}\) which provides confidence of the strategy employed in the present study. For all \(X\) groups considered (NH, O, and S), results indicate that the chelating ability of the different ligands follows the order: \(\text{N} - \text{OH}_4 > \text{N} - \text{OH}_3 > \text{N} - \text{OH}_2 > \text{N} - \text{OH}_1\); that is, the lesser aromatic the moieties in the ligand the more favorable the complex formation. The less chelating ability is clearly observed for \(\text{N} - \text{OH}_1\), which can also be attributed to the fact that it leads to the most distorted complex (\(\varphi\) around 33—39°). For the same aromatic backbone, the complex stability as a function of X follows the trend: \(\text{O} \approx \text{NH} > \text{S}\). This is likely due to the presence of S in the five-membered ring, which decreases the electronic density of the coordinating N as compared with ligands with \(X = \text{O}\) or \(\text{NH}\), in agreement with the trend observed for the \(\text{Cu—N}\) distance in the different complexes.

Energy Decomposition Analysis. With the purpose of acquiring a better understanding of the bonding between Cu(II) and the ligands and the corresponding reaction energies, previous to the analysis of the metalloaromaticity, we have performed an EDA at the B3LYP/TZ2P level of theory using the B3LYP/10s7p4d1f-optimized geometries. For these calculations, we have considered three fragments for each complex: the Cu(II) metal ion and the two equivalent anionic ligands. The values obtained for the \([\text{Cu(NNH-ON}_2]\) (\(n = 1–3\) family complex and for \([\text{Cu(N-O)}_4]\) are shown in Table 3. As it can be seen, the preparation energies (\(\Delta E_{\text{prep}}\)) are relatively small and very similar for different compounds. The interaction energies (\(\Delta E_{\text{int}}\)) follow the above-mentioned trend of the reaction energies (\(\Delta E\), with the \([\text{Cu(N-O)}_4]\) and \([\text{Cu(NNH-ON}_2]\) complexes being the most and least stable ones (−709.84 and −672.66 kcal mol\(^{-1}\), respectively). This trend is mostly caused by the electrostatic interaction term (\(\Delta E_{\text{elstat}}\)) because it goes from −605.15 \((\text{[Cu(NNH-ON}_2])\) to −685.26 kcal mol\(^{-1}\) \((\text{[Cu(N-O)}_4)\)). This is not surprising because the interaction is given between two anionic ligands and a central dication. The fact that \(\Delta E_{\text{elstat}}\) is larger (in absolute values) in \([\text{Cu(N-O)}_4]\) than in \([\text{Cu(NNH-ON}_2]\) is reasonable because in the former complex the negative charge of the ligand is more concentrated,
whereas in the latter one the charge is delocalized along the aromatic backbone. As expected, the ΔE_{Pauli} term increases with the reduction of the sum of the R(Cu–O) and R(Cu–N) bond distances. ΔE_{elstat} enlarges (in absolute value) for shorter R(Cu–N) bond distances.

Let us now consider the ΔE_{elstat} term and its σ and π components. An analysis of the electron charge transfer between the anionic ligands and Cu(II) indicates that there is a σ-donation of ~ 0.20 e from the anionic ligand lone pairs to Cu(II) and a π-backdonation of <0.15 e from the occupied Cu(II) orbitals of proper symmetry to the π^* LUMO orbital of the ligands. There is also some π-interaction, but it is almost negligible. Thus, σ-donation is clearly more important than π-backdonation, which manifests energetically in a larger $\Delta E_{\text{elstat}}(\sigma)$ contribution as compared with $\Delta E_{\text{elstat}}(\pi)$. The $\Delta E_{\text{elstat}}(\sigma)$ term depends on the σ-donor character of the ligand. For instance, phenols are more acidic than aliphatic π-anionic ligands and Cu(II) indicates that there is a lower basicity than deprotonated π-anionic ligands and Cu(II). These chelators are based on multifunctional ligands that exhibit the proper pharmacokinetic properties to be used as potential metal-chelators in AD. Particular emphasis is paid on the aromaticity of the metalated rings of the Cu(II)-complexes and their possible correlation with the computed stability constants. At first instance, the electronic-based I_{NC} and the geometric-based HOMA indices at the metalated ring have been calculated for the $[\text{Cu(NX-O2)}_2]$ complex families ($X = \text{NH, O, S}; n = 1 – 3$) as well as for $[\text{Cu(N–O4)}_2]$. Figure 3 depicts the correlation between both I_{NC} and HOMA with the computed log β_2. (The corresponding values are available in the Supporting Information.) It can be seen that for $[\text{Cu(NX-O2)}_2]$, $[\text{Cu(NX-O3)}_2]$, and $[\text{Cu(N–O4)}_2]$ the degree of metalloaromaticity increases (the I_{NC} and HOMA values increase) and the stability constants are larger. This trend, however, is not followed by $[\text{Cu(NNH-OH1)}_2]$ and $[\text{Cu(NO-O1)}_2]$, which exhibit a slightly larger degree of metalloaromaticity, but smaller log β_2 values than $[\text{Cu(NNH-O2)}_2]$ and $[\text{Cu(NO-O2)}_2]$, respectively. This can be explained by the already aforementioned ligand—ligand repulsion occurring in $[\text{Cu(NNH-O1)}_2]$ and $[\text{Cu(NO-O1)}_2]$, which destabilizes the complex; that is, for these particular cases, the complex stability is influenced by steric effects. The fact that the aromaticity of the metalacycle decreases with the presence of more aromatic moieties in the ligand is reminiscent of what happens with acenes. The aromaticity of the most external ring of acenes was found to decrease when adding six-membered rings to the series, that is, when going from the smallest member of the series (benzene) to, for instance, nonacene. Accordingly, an enhancement of the degree of aromaticity in the metalated ring drives to more favorable ΔG_{elstat} and log β_2 values, and thus one can conclude that the most stable complexes are those that present higher degrees of metalloaromaticity. This situation is similar, although not analogous, to the increase in aromaticity observed in certain resonance-assisted hydrogen bonds when the proton is substituted by a Li$^+$ cation.

Table 3. Energy Decomposition Analysis for the $[\text{Cu(NNH-On)}_2]$ Family Complex ($n = 1 – 3$) and $[\text{Cu(N–O4)}_2]$b

<table>
<thead>
<tr>
<th></th>
<th>$[\text{Cu(NNH-O1)}_2]$</th>
<th>$[\text{Cu(NNH-O2)}_2]$</th>
<th>$[\text{Cu(NNH-O3)}_2]$</th>
<th>$[\text{Cu(N–O4)}_2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔV_{elstat}</td>
<td>-605.15</td>
<td>-629.89</td>
<td>-664.77</td>
<td>-685.26</td>
</tr>
<tr>
<td>ΔE_{Pauli}</td>
<td>215.84</td>
<td>219.82</td>
<td>216.21</td>
<td>231.34</td>
</tr>
<tr>
<td>$\Delta E_{\text{elstat}}(\sigma)$</td>
<td>-134.43</td>
<td>-137.75</td>
<td>-139.81</td>
<td>-149.27</td>
</tr>
<tr>
<td>$\Delta E_{\text{elstat}}(\pi)$</td>
<td>-112.63</td>
<td>-92.97</td>
<td>-87.12</td>
<td>-88.34</td>
</tr>
<tr>
<td>ΔE_{int}</td>
<td>-293.43</td>
<td>-288.57</td>
<td>-270.02</td>
<td>-267.52</td>
</tr>
<tr>
<td>ΔE_{int}</td>
<td>-682.75</td>
<td>-698.64</td>
<td>-718.58</td>
<td>-721.45</td>
</tr>
<tr>
<td>ΔE_{prep}</td>
<td>10.08</td>
<td>9.27</td>
<td>14.19</td>
<td>11.60</td>
</tr>
<tr>
<td>ΔE</td>
<td>-672.66</td>
<td>-689.38</td>
<td>-704.39</td>
<td>-709.84</td>
</tr>
</tbody>
</table>

b In ADF, for EDA with hybrid B3LYP, $\Delta E_{\text{elstat}} = \Delta E_{\text{elstat}}(\sigma) + \Delta E_{\text{elstat}}(\pi) + \Delta E_{\text{elstat}}(\text{Pauli})$. Values in kilocalories per mole.

CONCLUSIONS

In the present work, DFT calculations have been used to analyze the coordinative properties of a set of chelating ligands toward Cu(II). These chelators are based on multifunctional ligands previously identified and characterized by some of us to exhibit the proper pharmacokinetic properties to be used as potential metal-chelators in AD. Particular emphasis is paid on the aromaticity present in the metalated rings of the complexes and its influence on the chelating ability of the complex. It considered ligands enclose...
identical metal binding sites, a heterocyclic N atom, and an OH group (this latter being deprotonated upon Cu complexation) and only differ in the kind and size of the external aromatic moieties.

The stability constants (log β_2) of the Cu(II)-complexes in solution have been evaluated and correlated to the degree of metalloaromaticity. Results indicate that those chelating ligands that contain fewer aromatic moieties form more stable complexes, that is, exhibit larger log β_2 values. The aromatic indices employed in this work (I_{NG} and HOMA) show that those complexes whose ligands contain fewer external aromatic moieties show higher degrees of aromaticity in the metalated ring. In general, a pretty good correlation is observed between metalloaromaticity and the stability constants (log β_2): the higher the metalloaromaticity, the larger the log β_2 value.

MOs and aromaticity descriptors confirm that present complexes exhibit Möbius metalloaromaticity. Detailed analysis of the Cu(II)-ligand nature of the bonding indicates that the most stable complexes have the negative charge of the ligands more localized at the metalated rings, hence increasing their σ-donor character and better stabilizing the complexes they form. Computed values of log β_2 range from 15 to 30, which reveals the importance of the overall electronic structure of the system (and not only the nature of the basic sites) in the chelating properties of ligands that can manifest metalloaromaticity. Indeed, this fact can be used to fine-tune in a controlled fashion the electronic properties of the chelating ligands, a crucial aspect to design MPACs to be applied not only in AD therapeutics but also in several metal-promoted neurodegenerative diseases.

Figure 3. Correlation between I_{NG} (blue) and HOMA (red) indices with the stability constants (log β_2) of the $[\text{Cu(NNH-On)}_2]$ (a), $[\text{Cu(NO-On)}_2]$ (b), and $[\text{Cu(NS-On)}_2]$ (c) complex families ($n = 1–3$). For all cases, the $[\text{Cu(N-O4)}_2]$ has also been included.